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Asymptotic behaviour of correlation functions and the 
interfacial tension in the two-dimensional SOS model of an 
interface in zero external field 

J Dudowicz 
Institute of Physical Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 
Warszawa, Poland 

Received 7 December 1987 

Abstract. The modified direct correlation functions Ccond and Csym are studied for a 
two-dimensional SOS system ( M  x CO) in a zero external field G = 0. The asymptotic limit 
W +  00 of the interface width W = ( M  + I ) / T  is considered in particular, also in connection 
with the Yvon-Triezenberg-Zwanzig (YTZ) formula for the interfacial tension r and with 
its modification obtained by Ciach et al. The successive contributions to the interfacial 
tension r, resulting from various terms of the derived relations, are computed and discussed. 
In the asymptotic limit W+CO the interfacial tensions obtained from the YTZ formula and 
from the Ciach formula agree with each other and with r calculated earlier by Evans and 
extrapolated to G = 0 by Stecki and Dudowicz. 

1. Introduction 

In a series of papers (Stecki 1984, Dudowicz and Stecki 1985, Stecki and Dudowicz 
1986a, Ciach 1986, Stecki et a1 1986, Ciach et a1 1987) we have studied the structure 
of the fluctuating interface between two coexisting phases in two dimensions, for 
systems with model Hamiltonians such as the columnar (solid-on-solid) model (see, 
e.g., van Leeuwen and Hilhorst 1981). 

In particular, we have determined the asymptotic behaviour of various two-point 
correlation functions and of the related quantities in the limit of unbounded fluctuations 
of the interface. This limit is reached in an infinite system for a vanishing external 
(e.g., gravitational) field or alternatively in a finite system with no external field (except 
for boundaries which ensure spatial separation of the two coexisting phases) for system 
sizes increasing indefinitely. In either case the width W of the interface, conventionaliy 
defined in terms of the rlerivative of the density profile, diverges, W + 03. 

We have extracted several quantities which exist in this limit and therefore may 
best be called ‘intrinsic’ (Stecki et a1 1986). In a recent paper (Ciach et a1 1987) we 
have studied the Yvon-Triezenberg-Zwanzig equation (see, e.g., Rowlinson and Widom 
1982) and its behaviour and indeed validity in the limit of vanishing external field. In 
particular, we found that the original equation (see equation (3.1) below) may be 
interpreted as defining a certain width-dependent quantity r = r( W); and that its 
W = m  limit exists and agrees with the interfacial tension calculated by a different 
route. Alternatively equation (3.8) of this paper was derived quite generally by Ciach 
et a1 (1987) expressing directly the limiting value of I‘( W), i.e. the true interfacial 
tension, in terms of the limiting values of the new ‘conditional’ direct correlation 
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function Ccond.  I have recently noted a curious feature of the new equation (3.7) of 
this paper, i.e. the R H S  produces zero, if the order of limit and summation (integration) 
is reversed. This prompted a re-examination in some detail of the relations between 
quantities appearing in the old YTZ equation, the Ornstein-Zernike direct correlation 
function in particular, and the new quantities invented by Ciach (1985) appearing in 
the new equation (3.8). This study, for the SOS model in two dimensions, is reported 
here. 

In particular, we study the behaviour of these quantities and of the relations between 
them in the asymptotic limit W +  CO, for the SOS model in two dimensions. These 
results acquire an additional interest in view of the most recent results by Ciach (1987) 
who has apparently found a non-analyticity of the direct correlation function 
C( k ;  z, , z2) about k = 0 in three dimensions. The derivation of the usual YTZ equation, 
depending as it does on the assumption of such analyticity (see, e.g., Evans (1979) for 
an exhaustive review), is therefore called into question. 

In 0 2 we derive or quote and discuss the relations between various direct correlation 
functions and in particular the behaviour of these relations in the limit W = CO. In § 3 
we report the bulk of the results obtained for the S O S  model in two dimensions, and 
follow with a discussion in § 4. The working equations are recalled in the appendix. 

2. Conditional correlation function and symmetric correlation function 

The system studied is a two-dimensional S O S  ( M  x CO) model, 1 < z M, --CO < x < CO, 

with periodic boundary conditions in the x direction. The solid-on-solid model replaces 
the interface by an array of columns of occupied sites and may be considered a good 
approximation at low temperatures to more elaborate models of the interface. 

The reason for introducing the correlation function Ccond, invented by Ciach (1989, 
stems from the divergence of the Orstein-Zernike direct correlation function ( DCF) 

with the size(s) of the system. C c o n d  is non-singular in this limit (Ciach 1985, 1986). 
The relation between C c o n d  and C is known (Ciach et a1 1987) 

c c o n d ( Z 1 ,  z2 ;  k ~ )  = p ( z 2 ) e ( Z l  9 z2; k, )+  Econd 

E c o n d  = v-p(z2)v;i)(zI z2 - 1; k,) 

(2.1) 

where 
case (for given M )  is 

is a correction term vanishing with increasing W (or M )  and in the general 

(2.2) 

where p (  i )  is the probability of height i of a single SOS column and 6( k,) is the inverse 
matrix of the height-height correlation function P( k,) 

6 ( k , )  = FykJ'.  (2.3) 
The hierarchy of these functions was introduced by Stecki (1984) and is described and 
discussed elsewhere (Stecki 1984, Ciach 1986, Stecki and Dudowicz 1986b). The 
gradients V', V- denote 

(2.4) 

(2.5) 

V'X( i )  = X (  i + 1) - X( i )  

V-X( i )  = X (  i )  - X (  i - 1) 

and z ( k ,  z) is the Fourier transform of quantity X ( x ,  z). The relations (2.1) and (2.2) 
are valid for any value of the Fourier variable k , ,  as well as for any value of Ax; 
however, as found by Stecki (1984) the values of C (and C c o n d  and Csym) are equal 
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to zero for any IAxJ 2 2, so only C(Ax = 0) and C(Ax = 1) contribute to e (k , )  in the 
SOS system: 

(2.6) 

In the limit M+CO ( W + m ) ,  at zero external field G = 0 ,  econd(kl) (or Ccond(Ax)) 
depend on one position variable IAzI = Iz2- z,) only, instead of two (z, and z2 or Az 
and y = (z, + z2 - M)/2  equivalently): 

e ( k l )  = C(Ax = 0) +2C(Ax = 1) cos k,. 

or 

The LHS of (2.7) or (2.8) have the known analytical form (Ciach 1986). 
First we show that, at zero external field, the difference 

E econd(Az, Y ;  kL) - e%d(lAzl; kl) (2.9) 

tends to zero as the reciprocal of the square of the size of the system. Figures 1 and 
2 illustrate the almost linear dependence of D( k, = 0) against (M + 1)-2 for Az = 0, 1 ,2  
and for various values of y. The deviations from linearity are slight and increase more 
for larger y and M, i.e. for large distances from the Gibbs dividing surface. The 
correction term &ond defined by (2.2) tends to zero with M + a (or W + CO) (Ciach 
1986) and figure 3 shows (based on the example of one chosen Az) that &ond behaves 
also as ( M +  I ) - ~ .  

I 
0 4 8 1 2 x 1 0 - ~  

IM +I )-z 

Figure 1. The difference D(Az = 0 )  = CCond(Az = 0, y; k ,  = 0 )  -CZnd(Az = 0; k ,  = 0) for 
a two-dimensional SOS ( M  x a) system at zero external field G = 0 and at T = 0.3 Tc, as a 
function of size M of the system ( M  = 28-70) for various values of y = ( z ,  + zz - 2 Mmid)/2, 
Mmid = M / 2 .  Points for y = 0 lie on the straight line but for larger y we observe deviations 
from linearity. Points which are not connected correspond to the range y = 3-7 and the 
curve shown in the figure corrresponds to y = 8. 
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Figure 2. ( a )  Same as figure 1 but for D(IAz( = 1). Positive D corresponds to Az= 1; 
negative D corresponds to Az = -1 .  ( b )  Same as figure 1 but for D(IAzI = 2).  Positive D 
corresponds to Az = -2; negative D corresponds to A z  = 2. 

The symmetric correlation function Csym (Bedaux et al 1985, Ciach et a1 1987) 
exhibit (contrary to Cc&) a symmetry with respect to interchange of variables zl, z2 

C s y m ( Z I 3  ~ 2 )  = Csym(z29 ~ 1 ) .  

C s y m ( Z 1 ,  ~ 2 )  = C P ( Z ~ ) P ( Z ~ ) I ~ / ~ C ( Z ~  , ~ 2 )  + ~ s y m  

+v-[p(zl)’~2]v-[p(z2)1~2]Q(z, - 1, z2- 1). 

(2.10) 

(2.11) 

(2.12) 

For given M we find the relation between Csym and C :  

E ~ ~ ~ = P ( z ~ ) ” ~ v - [ ~ ( z ~ ) ” ~ I v ; Q ( z ~ ,  ~ 2 -  ~ ) + P ( ~ ~ ) ” * V - [ P ( ~ ~ ) ’ / ~ I V ; Q ( Z ~  - 1, ~ 2 )  

For an infinite system M +CO (or W + a), the differences between z and (z - 1) and 
V [ ~ ( Z ) ’ / ~ ]  and V p ( z ) / 2 p ( z )  can be neglected and the relation (2.11) simplifies to 
equation (4.8) obtained by Ciach et a1 (1987). Similarly to the correction term E c o n d  

(see (2.2)), the correction term Esym (2.12) also tends to zero with M + CO (or W +  CO) 

as ( M  + I ) - ~ .  

3. The interfacial tension 

The Yvon-Triezenberg-Zwanzig formula for the interfacial tension between two 
coexisting fluids (see, for example, Rowlinson and Widom 1982) takes the following 
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I 
0 4 8 12 x 10-L 

(M  +I I -*  

Figure 3. The correction term -EEond = E ( k ,  = 0; Az = 0, y ) p ( z , )  - ECond( k ,  = 0; Az = 0, y) 
for a two-dimensional SOS ( M  x CO) system plotted against ( M  + 1)-2 at T = 0.3 Tc, for 
various values of y, in the range M = 28-70. 

form for the lattice system (Ciach et a1 1987) 

2 p r =  - c P ( z l ) c P ( z 2 ) c 2 ( z l ,  z2) (3.1) 
21 22 

where p = ( k T ) - ' ,  k is the Boltzmann constant, T is the temperature, and C2 denotes 
the second moment of C, defined as 

= 2 C ( z l , z 2 ; A x = 1 )  (3.3) 
for the SOS system. r is called the effective interfacial tension because of the angle 
dependence of r in a lattice system (Binder 1983). 

Also, the second moments of Ccond and Csrm are 

Cconci2(Z1, ZZ) = 2Ccond(Zl, 2,; A X  = 1 )  

C s y m 2 ( ~ 1 3  ~ 2 )  = 2Csyn(Z, , 22; Ax = 1) .  
(3.4) 
(3.5) 

In comparison with the original (YTZ) formula, expression (3.1) employs sums 
instead of integrals and probabilities p ( i )  = -V+p( i )  instead of derivatives dp(z)/dz. 
It cannot be applied directly to an infinite system. The remedy is to replace C, by 
CcondZ by using relations (2.1) and (2.2). In this way the new YTZ formula is obtained 

pr( w, = -4 P(zl) Ccond2(Z1 z2) + 4  p(z l )  v-p(z2)v ;02(zl ,  z2 - 1 )  (3.6) 
= I  22 21 22 

where Q2 is the second moment of Q. 
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For W sufficiently large, the contribution of the second term in (3.6) vanishes and 
we have 

Pr( W )  = -f C P ( z ~ )  C C c o n d 2 ( ~ 1 9 ~ 2 ;  W ) .  (3.7) 
Z I  22 

If now W + q  (3.7) takes the form containing the asymptotic limit C E n d 2  (Ciach et 
a1 1987) 

Pr( = = -t C z n d 2  ( l A z l ) *  (3.8) 
A 2  

The summation on the RHS of (3.8) with the analytic form of C z n d 2  (Ciach 1985, 1986) 
produces 2 sinh' K = 2s' (where K is the coupling energy constant in the kT units) 
which is a correct result for Preff, obtained also from the Evans equation (Evans 1979, 
equation (A.28)) and extrapolation to G = Ot (Stecki and Dudowicz 1986a). 

It is interesting to note that the main contribution to (3.8) comes from Az = 0 and 
the successive CzndZ(lAz() for Az # 0 contribute less than 6% of the sum. Therefore 
the following approximation is proposed. It must be good at low temperatures. 

p r (  w=KJ)- c g n d 2 ( A Z = o ) .  (3.9) 
Figure 4(a) shows the existence of the limit of CcondZ also demonstrating that the 
dependence on ( M  + 1)-2 is linear (unless the distance from the Gibbs dividing surface 

15 2 

16 0 

16 8 

- - 
3 

11 176 
a 
I 

n D 

- L? 

18 4 

19 2 

20 0 

i M + I ) - '  ( M + I ) - '  
Figure 4. ( a )  The second moment CcondZ (Az = 0, y )  of the conditional correlation function 
CFond for a two-dimensional SOS ( M  x m) system plotted against ( M  + 1)-* at 7 = 0.3 T,, 
G 3 0, for various y, in the range M = 28-70. ( b )  The second moment C,,,, of the symmetric 
correlation function Csym; othcr details as for ( a ) .  
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is large). The convergence of CcondZ(ZI, z2) to its asymptotic value Cznd2(IAz() is 
achieved for any given z, , z2 irrespective of their values. The same conclusion refers 
to Csym2(zI, z2) and is shown in figure 4(b). 

We discuss now the curious features of (3.6) or (3.7). In a shorthand notation (3.6) 
takes the form 

pr( W) = A y n d  + ATnd. (3.10) 

With the increasing system M + CO (or W + 00) 

AYnd -4 c P(zl) c Ccond2(Z1 Y z 2 )  (3.11) 
ZI 22 

tends to zero as (M+1) -2  (see figure 5 ( a ) )  

A?nd E t  c P(zl) c Econd2 
21 22 

tends to 2s2 also as ( M + 1 ) - 2  (figure 5(6)). 

and 

(3.12) 

Hence (3.6) produces (for W +  CO) the correct result irrespectively of the order of 
the summation and taking the limit W+CO. However, AYnd+O and AFnd+2s2  if 
summations are carried out first and the limit W + CO is taken next. When the order 
is reversed, AYnd produces 2s2 and AYnd vanishes. 

The RHS of (3.7) gives zero or 2s’ depending on the order of summation and limit 
W+CO. 

0.20 l a )  I 

l M + 1 ) - 2  ( M I 1  1-2 

Figure 5. The contributions ( a )  AFnd (see equation (3.11)) and ( b )  ATnd (see equation 
(3.13)) to the interfacial tension pr for two-dimensional SOS system ( M  x 03) as a function 
of (M+1) -2  at T=0.3Tc,  G r O .  M range 28-110. 
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Instead of substitution of (2.1) and (2.2) into the YTZ equation (3.1) we can use 
relations (2.11) and (2.12) between C and Csym. After some algebra we find 

~ ~ ( w ) = - ; C P ( Z , ) ” ~ C P ( Z ~ ) ” ~ C ~ ~ ~ ~ ( Z ~ ,  ~ 2 )  
=I  2: 

+CP(Zl)  C P ~ ~ 2 ~ ’ ” v - ” ~ ~ 2 ~ ’ ” I ~ ~ Q 2 ~ ~ l ,  z2- 1) 

+ ; C P ~ ~ l ~ ” 2 v - ~ P ~ ~ l ~ 1 ’ 2 1  c P ~ ~ 2 ~ ’ ” ~ - ~ P ~ ~ 2 ~ ’ ” 1 Q 2 ~ ~ ,  - 1, z2 - 1). 

Z I  2 2  

ZI  22 

(3.13) 

In a shorthand notation (3.13) becomes 

pr( w) = A ; Y ~ + A ; Y ~ + A ; Y ~ .  (3.14) 

With M+CO (and W+CO) 

(3.15) 

tends to s2/2 as ( M +  l)-’ (figure 6(a)) and 

AiY”’ = c P ( Z J  c P(z2)”2v-[P(z2)”21~~Q2(zl 9 z2 - 1) (3.16) 
21 2: 

tends to 2s’ as ( M + l ) - ’  (figure 6(b)), whereas 

A;’”’ 4 p ( ~ l ) ” ’ V - [ p ( ~ l ) ” ~ ]  ~ ( Z J ’ ” V - [ ~ ( Z ~ ) ’ ’ ~ ] Q ~ ( Z ~  - 1, ~ 2 -  1) (3.17) 

tends to - s 2 / 2  also as ( M +  1)-’ (figure 6(c)). All three quantities Aiym, Aiy”’, AiY” 
vary almost linearly with ( M  + l)-’ and AiYm and Aiy” cancel in the limit W + CO. So 
we find a new expression for the interfacial tension 

21 2: 

pr(W = $ c P ( z l )  e P ~ ~ 2 ~ ” 2 v - ~ P ~ ~ 2 ~ ” 2 1 v ; Q 2 ~ ~ l ,  z2- 1) 
21 2: 

+t e P(z2)1’2v-[P(zl)’/21 c P(ZZP;Q(Zl- 1, z2) 
21 2 2  

or 

pr( W )  = c P(Z1) c P(z2)v-[P(z2)’”1v;0*(Z1, z2- 1) 
21 22 

= c P(zl)v-[P(zl)”21c P(Z2)VIQ2(Z1- 1922) 
21 2: 

which gives pr,, = 2s’ for W + CO. 

Figure 7 shows p r  against W P 2 .  The line (A) corresponds to G = 0 and a series 
of M, the line (B)  corresponds to a series of G vanishing to zero; both are computed 
from the YTZ equations (3.1) or (3.6) which are equivalent. The line (C) was computed 
earlier from the Evans equation (Evans 1979, equation (A.28)) (Stecki and Dudowicz 
1986a). However, no universal common curve is observed; the asymptotic limit 
p r (  W = CO) is the same (2s’) for all three cases as well as the linear dependence of 
pr( w) on w - ~ .  
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0 001 0 92  0 03 
( M  + I  1- iM.1 S' 

(M+ll- '  

Figure 6. The contributions ( a )  AiY" (see equation (3.15)), ( 6 )  ASY" (see equation (3.16)) 
and (c) ASYm (see equation (3.17)) to the interfacial tension pr  for a two-dimensional 
( M  x a) S O S  system as a function of ( M  + 1)-' at T = 0.3 Tc, G = 0, for the range M = 
28-110. 

4. Discussion 

In the absence of an external field, the infinite sizes of the system correspond to an 
infinite interface width W. Then the second moment C2, of the direct correlation 
function C, diverges. The original YTZ formula for interfacial tension ( (3 .1) ,  has been 
modified so that the resulting equation (3 .8)  is valid in the limit W + m  (Ciach et al 
1987)  directly. It contains one summation (integration) over the relative distance Az. 
Since we find that the main contribution ( - 9 5 % )  to p r ( o o ) = 2 s 2  comes from 
CZnd2(Az  = 0), the following approximation seems reliable at low temperatures 
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8.21 I I I I I 1 

6 14 22 3 0 ~ 1 0 - ~  
W - 2  

Figure 7. The interfacial tension pr at T = 0.3 T, for a two-dimensional SOS system ( M  x CO) 

plotted against the interface width W-2;  the line (A) corresponds to G = 0, W = ( M  + l ) / v  
and the YTZ equation (3.1); the line (B) corresponds to a series of G vanishing to zero, 
W =  [G-'/4(2s)-'/2] and the YTZ equation (3.1); and the line (C) was computed from the 
Evans equation (Evans 1979, equation (A.28)). 

The second moment &nd2 of the 'correction' term Econd (2.2), tends to zero and CcondZ 

tends to C g n d 2 .  We have studied here the limiting behaviour of these quantities and 
we find that 

roo f" 
lim J dzf(z, W )  z J dz lim f(z, w). 

W + X  -m -02 W-CC 

Therefore, as described in § 3, the contributions to pr( W = CO) depend on the order 
of summation (integration) and taking the limit W = 00. The interfacial tension pr( W) 
for G = 0 is also compared with pr( W) calculated for a series of vanishing G by using 
the original YTZ formula (3.1) or by using the Evans equation (Evans 1979, equation 
(A.28)). The limiting value pr( W = CO) is common for these three cases. And indeed 
in the limit W = CO the YTZ formula and the Evans formula (A.28) are equivalent. 

For W<CO, in these three cases no universal curve pr( W) is found. Figure 7 
shows three (linear) plots of PI'( W) against W-2,  with an extrapolated common value 
pr(oo) but with three different slopes. We also note that the plot is linear to a much 
better approximation for G > 0. 
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Appendix 

For a finite SOS system ( M  x CO), the Fourier transform of the height-height correlation 
function P ( h , ,  h2 )  (Stecki 1984) is computed by the method described earlier, with 
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the aid of eigenvectors xi and eigenvalues Ai of a column-column transfer matrix T 
(see, for example, Stecki and Dudowicz 1986b): 

where R, = A i / A , ,  n = h,  + 1 and m = h2+ 1. The inversion of matrix P( k, )  produces 
the matrix 8( k,) 

d( k,) = b( k,)-’ 

6 ( z 1 = h l ,  z 2 = h 2 ;  k,)=V;V;Zj(z ,=h, ,z2=h2;  kL). 643) 

(A21 
and the Orstein-Zernike correlation function C can be obtained from the formula 
(Stecki 1984): 

The inversion of P( k, )  as well as the diagonalisation of matrix T was done numerically 
on a CDC 6400 in double precision. Only then were the values reliable. 

It is remarkable that calculation of C ( k , )  via @ ( k , )  (see (Al)-(A3)) is associated 
with the almost tenfold decrease of computer time, compared with the standard method 
described elsewhere (Stecki and Dudowicz 1986a, b) via f?(k,)  and then inverting 
f i ( k , )  into 6 ( k l ) .  

Carrying out this procedure (Al)-(A3) first for k ,  = 0 and then for k = ~ / 2 ,  we 
find the second moment of C, C2 = 2C(Ax = 1) from the relation (2.6). 

Equations (A2) and (A3) are also valid in their application to C c o n d  and Csym 

e c o n d ( Z 1 ,  z2; k;)=v;V;i)cond(Z1, z2; k,) 

C s y m  ( ~ 1 ,  ~ 2 ;  k,) = V;V;Qsym(Z,, ~ 2 ;  k , )  

8cond(kl )  = Pcond( kl)-l (‘46) 

Q s y m ( k r )  = Psym(k,)-’  (A7) 

(A4) 

(A51 
.. * 

where the correlation function P c o n d  ( z ,  , z2)  and Psym (z, , z2 ) ,  invented by Ciach (1986), 
are defined as 
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